Inhibitory glutamate receptors in spider peripheral mechanosensory neurons.
نویسندگان
چکیده
Most mechanosensory neurons are inhibited by GABAergic efferent neurons. This inhibition is often presynaptic and mediated by ionotropic GABA receptors at the axon terminals. GABA receptor activation opens Cl- channels, leading to membrane depolarization and an increase in membrane conductance. In many invertebrate preparations, efferent neurons that innervate mechanosensory afferents contain glutamate in addition to GABA, suggesting that the sensory neurons are also modulated by glutamate. However, the effects of glutamate on these neurons are not well understood. Peripheral parts of the spider (Cupiennius salei) mechanosensory neurons are surrounded by efferent fibers immunoreactive to antibodies against GABA and glutamate. GABA and its analogue muscimol were shown to effectively inhibit spider mechanosensory neurons innervating lyriform slit sensilla VS-3 that detects cuticular strains in the leg. Here, we show that glutamate also inhibits the VS-3 neurons, but its effects are different from those of GABA or muscimol, suggesting that it acts on a different group of receptors. GABA and muscimol always depolarized these neurons and the inhibitory effect was strongly correlated with the amount of depolarization. In contrast, glutamate inhibited the VS-3 neurons even when it did not depolarize them. In addition, while glutamate inhibited both the axonal action potentials elicited with electrical stimulation and dendritic action potentials produced by mechanical stimulation, muscimol only inhibited the axonal action potentials. Therefore, the inhibitory glutamate receptors in the VS-3 neurons are distinct from and differently distributed than the GABA receptors, providing a subtle control of the neurons' sensitivity in varying behavioural situations.
منابع مشابه
GABA and glutamate receptors have different effects on excitability and are differentially regulated by calcium in spider mechanosensory neurons.
GABA and glutamate receptors belonging to the ligand-gated chloride-channel family are primary targets of insecticides and antiparasitics, so their molecular structure, pharmacology and biophysical properties have attracted significant attention. However, little is known about the physiological roles of these channels or how they regulate neuronal excitability and animal behavior. Mechanosensor...
متن کاملSpider peripheral mechanosensory neurons are directly innervated and modulated by octopaminergic efferents.
Octopamine is a chemical relative of noradrenaline providing analogous neurohumoral control of diverse invertebrate physiological processes. There is also evidence for direct octopaminergic innervation of some insect peripheral tissues. Here, we show that spider peripheral mechanoreceptors are innervated by octopamine-containing efferents. The mechanosensory neurons have octopamine receptors co...
متن کاملPeripheral synapses at identified mechanosensory neurons in spiders: three-dimensional reconstruction and GABA immunocytochemistry.
The mechanosensory organs of arachnids receive diverse peripheral inputs. Little is known about the origin, distribution, and function of these chemical synapses, which we examined in lyriform slit sense organ VS-3 of the spider Cupiennius salei. The cuticular slits of this organ are each associated with two large bipolar mechanosensory neurons with different adaptation rates. With intracellula...
متن کاملDistribution and function of GABAB receptors in spider peripheral mechanosensilla.
The mechanosensilla in spider exoskeleton are innervated by bipolar neurons with their cell bodies close to the cuticle and dendrites attached to it. Numerous efferent fibers synapse with peripheral parts of the mechanosensory neurons, with glial cells surrounding the neurons, and with each other. Most of these efferent fibers are immunoreactive to gamma-aminobutyric acid (GABA), and the sensor...
متن کاملContributions of Voltage- and Ca -Activated Conductances to GABA-Induced Depolarization in Spider Mechanosensory Neurons
Panek I, Höger U, French AS, Torkkeli PH. Contributions of voltageand Ca -activated conductances to GABA-induced depolarization in spider mechanosensory neurons. J Neurophysiol 99: 1596–1606, 2008. First published January 23, 2008; doi:10.1152/jn.01267.2007. Activation of ionotropic -aminobutyric acid type A (GABAA) receptors depolarizes neurons that have high intracellular [Cl ], causing inhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European journal of neuroscience
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2005